Compensating for Missing Data from Longitudinal Studies Using WinBUGS
نویسندگان
چکیده
Missing data is a common problem in survey based research. There are many packages that compensate for missing data but few can easily compensate for missing longitudinal data. WinBUGS compensates for missing data using multiple imputation, and is able to incorporate longitudinal structure using random effects. We demonstrate the superiority of longitudinal imputation over cross-sectional imputation using WinBUGS. We use example data from the Australian Longitudinal Study on Women’s Health. We give a SAS macro that uses WinBUGS to analyze longitudinal models with missing covariate date, and demonstrate its use in a longitudinal study of terminal cancer patients and their carers.
منابع مشابه
Telecobalt Machine Beam Intensity Modulation with Aluminium Compensating Filter Using Missing Tissue Approach
Introduction: The present study aimed to generate intensity-modulated beams with Aluminium compensating filters for a conventional telecobalt machine based on the outputs of a treatment planning system (TPS) performing forward planning and cannot simulate directly the compensating filter. Materials and Methods: In order to achieve the beam intensity modulation during treatment planning with th...
متن کاملچند رویکرد برخورد با مقادیر گمشده متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی بالینی
Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...
متن کاملA Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملMarginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data
A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...
متن کاملJoint Models of Longitudinal and Time-to-Event Data Using Gibbs Sampling
Jointly modelling related longitudinal and time-to-event data can offer advantages over separate modelling. We consider three models for longitudinal/time-to-event data: 1. random slopes and intercepts/constant hazard 2. random slopes and intercepts/step function hazard 3. random intercepts, fixed slope and IOU errors/constant hazard. Methods for simulating data from these models are outlined. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007